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ABSTRACT

We confront predictions of inflationary scenarios with the WMAP data, in com-
bination with complementary small-scale CMB measurements and large-scale struc-
ture data. The WMAP detection of a large-angle anti-correlation in the temperature–
polarization cross-power spectrum is the signature of adiabatic superhorizon fluctu-
ations at the time of decoupling. The WMAP data are described by pure adiabatic
fluctuations: we place an upper limit on a correlated isocurvature component. Using
WMAP constraints on the shape of the scalar power spectrum and the amplitude of
gravity waves, we explore the parameter space of inflationary models that is consis-
tent with the data. We place limits on inflationary models; for example, a minimally-
coupled

��� 4 is disfavored at more than 3- � . The data suggest, at the 2- � level, that the
spectral index runs from ns � 1 on large scales to ns � 1 on small scales. This, if true,
would imply that the third derivative of the inflaton potential plays an important role
in its dynamics.
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Subject headings: cosmic microwave background — cosmology: observations —
early universe

1. INTRODUCTION

An epoch of accelerated expansion in the early universe, inflation, dynamically resolves cos-
mological puzzles such as homogeneity, isotropy, and flatness of the universe (Guth 1981; Linde
1982; Albrecht & Steinhardt 1982; Sato 1981), and generates superhorizon fluctuations without
appealing to fine-tuned initial setups (Hawking 1982; Guth & Pi 1982; Starobinsky 1982; Bardeen
et al. 1983). During the accelerated expansion phase, generation and amplification of quantum
fluctuations in scalar fields are unavoidable (Parker 1969; Birrell & Davies 1982). These fluctua-
tions become classical after crossing the event horizon. Later during the deceleration phase they
re-enter the horizon, and seed the matter and the radiation fluctuations observed in the universe.

The majority of inflation models predict Gaussian, adiabatic, nearly scale-invariant primor-
dial fluctuations: these properties are generic predictions of inflationary models. The cosmic mi-
crowave background (CMB) radiation anisotropy is a promising tool for testing these properties,
as the linearity of the CMB anisotropy preserves basic properties of the primordial fluctuations. In
companion papers, Spergel et al. (2003) find that adiabatic scale-invariant primordial fluctuations
fit the WMAP CMB data as well as a host of other astronomical data sets including the galaxy and
the Lyman- � power spectra; Komatsu et al. (2003) find that the WMAP CMB data is consistent
with Gaussian primordial fluctuations. These results indicate that predictions of the most basic
inflationary models are in good agreement with the data.

While the inflation paradigm has been very successful, radically different inflationary models
yield similar predictions for the properties of fluctuations: Gaussianity, adiabaticity, and near-
scale-invariance. To break the degeneracy among the models, we need to measure the primordial
fluctuations precisely. Even a slight deviation from Gaussian, adiabatic, near-scale-invariant fluc-
tuations can place strong constraints on the models (Liddle & Lyth 2000). The CMB anisotropy
arising from primordial gravitational waves can also be a powerful method for model testing. In
this paper, we confront predictions of various inflationary models with the CMB data from the
WMAP, CBI (Pearson et al. 2002), and ACBAR (Kuo et al. 2002) experiments, as well as the
2dFGRS (Percival et al. 2001) and Lyman- � power spectra (Croft et al. 2002; Gnedin & Hamilton
2002).

This paper is organized as follows. In § 2, we show that the WMAP detection of an anti-
correlation between the temperature and the polarization fluctuations at l � 150 is the distinctive
signature of adiabatic superhorizon fluctuations. We compare the data with specific predictions of
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inflationary models: single-field models in § 3, and double-field models in § 4. We examine the
evidence for features in the inflaton potential in § 5. Finally, we summarize our results and draw
conclusions in § 6.

2. IMPLICATIONS OF WMAP “TE” DETECTION FOR THE INFLATIONARY
PARADIGM

A fundamental feature of inflationary models is a period of accelerated expansion in the very
early universe. During this time, quantum fluctuations are highly amplified, and their wavelengths
are stretched to outside the Hubble horizon. Thus, the generation of large-scale fluctuations is an
inevitable feature of inflation. These fluctuations are coherent on what appear to be superhorizon
scales at decoupling. Without accelerated expansion, the causal horizon at decoupling is � 2
degrees. Causality implies that the correlation length scale for fluctuations can be no larger than
this scale. Thus, the detection of superhorizon fluctuations is a distinctive signature of this early
epoch of acceleration.

The COBE DMR detection of large scale fluctuations has been sometimes described as a
detection of superhorizon scale fluctuations. While this is a viable (and likely correct) interpreta-
tion of the COBE results, it is not unique. There are several possible mechanisms for generating
large-scale temperature fluctuations. For example, texture models predict a nearly scale-invariant
spectrum of temperature fluctuations on large angular scales (Pen et al. 1994). The COBE detec-
tion sounded the death knell for these particular models not through its detection of fluctuations,
but due to the low amplitude of these fluctuations. The detection of acoustic temperature fluctua-
tions is also sometimes evoked as the definitive signature of superhorizon scale fluctuations (Hu &
White 1997). String and defect models do not produce sharp acoustic peaks (Albrecht et al. 1996;
Turok et al. 1998). However, the detection of acoustic peaks in the temperature angular power
spectrum does not prove that the fluctuations are superhorizon, as causal sources acting purely
through gravity can exactly mimic the observed peak pattern (Turok 1996a,b). The recent study
of causal seed models by Durrer et al. (2002) shows that they can reproduce much of the observed
peak structure and provide a plausible fit to the pre-WMAP CMB data.

The large-angle (50
�

l
�

150) temperature-polarization anti-correlation detected by WMAP
(Kogut et al. 2003) is a distinctive signature of superhorizon adiabatic fluctuations (Spergel &
Zaldarriaga 1997). The reason for this conclusion is explained as follows. Throughout this section,
we consider only scales larger than the sound horizon at the decoupling epoch. Zaldarriaga &
Harari (1995) show that, in the tight coupling approximation, the polarization signal arises from
the gradient of the peculiar velocity of the photon fluid, � 1,

�
E � −0 � 17(1 − � 2)

���
deck � 1(

�
dec) � (1)
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where
�

E is the E-mode (parity-even) polarization fluctuation,
�

dec is the conformal time at decou-
pling,

���
dec is the thickness of the surface of last scattering in conformal time, and � = cos( �k � �n).

The velocity gradient generates a quadrupole temperature anisotropy pattern around electrons
which, in turn, produces the E-mode polarization. Note that while reionization violates the assump-
tions of tight coupling, the existence of clear acoustic oscillations in the temperature-polarization
(TE) and temperature-temperature (TT) angular power spectra imply that most ( � 85%) CMB pho-
tons detected by WMAP did indeed come from z = 1089 where the tight coupling approximation
is valid. The velocity � 1 is related to the photon density fluctuations, � 0, through the continuity

equation, k � 1 = −3
���
� 0 +

����
, where

�
is Bardeen’s curvature perturbation. The observable tem-

perature fluctuations on large scales are approximately given by
�

T = � 0(
�

dec) + � (
�

dec), where� is the Newtonian potential, which equals −
�

in the absence of anisotropic stress. Therefore,
roughly speaking, the photon density fluctuations generate temperature fluctuations, while the ve-
locity gradient generates polarization fluctuations.

The tight coupling approximation implies that the baryon photon fluid is governed by a single
second-order differential equation which yields a series of acoustic peaks (Peebles & Yu 1970; Hu
& Sugiyama 1995):

( 	� 0 + 	� ) +
�

a
a

R
1 + R

(
�
� 0 +

��
) + k2c2

s ( � 0 +
�

) = k2 
 c2
s

�
−
�
3 � � (2)

where the sound speed cs is given by c2
s = [3(1 + R)]−1. The large-scale solution to this equation is

(Hu & Sugiyama 1995)

� 0(
�
) +
�

(
�
) = [ � 0(0) +

�
(0)]cos(kcs

�
) + kcs ��

0
d
����� �

(
���

) − � (
���

) � sin[kcs(
�

−
���

)] � (3)

and the continuity equation gives the solution for the peculiar velocity,

1
3cs
� 1(
�
) = [ � 0(0) +

�
(0)]sin(kcs

�
) − kcs � 

0
d
� � � �

(
� �

) − � (
� �

) � cos[kcs(
�

−
� �

)] � (4)

These solutions (equations (1), (3), and (4)) are valid regardless of the nature of the source of
fluctuations.

In inflationary models, a period of accelerated expansion generates superhorizon adiabatic
fluctuations, so that the first term in equation (3) and (4) is non-zero. Since � � −

�
and � 0(0) +�

(0) = 3
2

�
(0) = 5

3

�
(
�

dec) on superhorizon scales, one obtains
�

T � − 1
3

�
(
�

dec)cos(kcs
�

dec), and�
E � 0 � 17(1 − � 2)kcs

���
dec
�

(
�

dec) sin(kcs
�

dec) (see Hu & Sugiyama (1995) and Zaldarriaga &
Harari (1995) for derivation). Therefore, the cross correlation is found to be� �

T
�

E � � −0 � 03(1 − � 2)(kcs
���

dec)P� (k) sin(2kcs
�

dec) � (5)
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where P� (k) is the power spectrum of
�

(
�

dec). The observable correlation function is estimated as
k3
� �

T
�

E � . Clearly, there is an anti-correlation peak near kcs
�

dec � 3 � � 4, which corresponds to
l � 150: this is the distinctive signature of primordial adiabatic fluctuations. In other words, the
anti-correlation appears on superhorizon scales at decoupling, because of the modulation between
the density mode, cos(kcs

�
dec), and the velocity mode, sin(kcs

�
dec), yielding sin(2kcs

�
dec), which

has a peak on scales larger than the horizon size, c
�

dec ��� 3cs
�

dec.

Cosmic strings and textures are examples of active models. In these models, causal field
dynamics continuously generate spatial variations in the energy density of a field. Magueijo et al.
(1996) describe the general dynamics of active models. These models do not have the first term in
equation (3) and (4), but the fluctuations are produced by the second term, the growth of

�
and � .

The same applies to primordial isocurvature fluctuations, where the non-adiabatic pressure causes�
and � to grow. While the problem is more complicated, these models give a positive correlation

between temperature and polarization fluctuations on large scales. This positive correlation is
predicted not just for texture (Seljak et al. 1997) and scaling seed models (Durrer et al. 2002), but
is the generic signature of any causal models (Hu & White 1997)11 that lack a period of accelerated
expansion.

Figure 1 shows the predictions of the TE large angle correlation predicted in typical primordial
adiabatic, isocurvature, and causal scaling seed models compared with the WMAP data. The causal
scaling seed model shown is a flat Family I model in the classification of Durrer et al. (2002) that
provided a good fit to the pre-WMAP temperature data.

The WMAP detection of a TE anti-correlation at l � 50 − 150, scales that correspond to su-
perhorizon scales at the epoch of decoupling, rules out a broad class of active models. It implies
the existence of superhorizon, adiabatic fluctuations at decoupling. If these fluctuations were gen-
erated dynamically rather than by setting special initial conditions then the TE detection requires
that the universe had a period of accelerated expansion. Both inflation and the Ekpyrotic scenario
(Khoury et al. 2001, 2002) predict the existence of superhorizon fluctuations.

3. SINGLE FIELD INFLATION MODELS

In this section we explore how predictions of specific models that implement inflation (see
Lyth & Riotto (1999) for a survey) compare with current observations.

11Hu & White (1997) use an opposite sign convention for the TE cross power spectrum.
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3.1. Introduction

The definition of “single-field inflation” encompasses the class of models in which the infla-
tionary epoch is described by a single scalar field, the inflaton field. We also include a class of
models called “hybrid” inflation models as single-field models. While hybrid inflation requires a
second field to end inflation (Linde 1994), the second field does not contribute to the dynamics
of inflation or the observed fluctuations. Thus, the predictions of hybrid inflation models can be
studied in the context of single-field models.

During inflation the potential energy of the inflaton field V dominates over the kinetic energy.
The Friedmann equation then tells us that the expansion rate, H, is nearly constant in time: H ��
a
�
a � M−1

pl (V
�
3)1 � 2, where Mpl � (8 � G)−1 � 2 = mpl

� � 8 � = 2 � 4 � 1018 GeV is the reduced Planck
energy. The universe thus undergoes an accelerated expansion phase, expanding exponentially as
a(t) � exp( � Hdt) � exp(Ht). One usually uses the e-folds remaining at a given time, N(t), as a
measure of how much the universe expands from t to the end of inflation, tend: N(t) � ln[a(tend)] −
ln[a(t)] = � tend

t H(t)dt. It is known that flatness and homogeneity of the universe require N(tstart) �
50, where tstart is the time at the onset of inflation (i.e., the universe needs to be expanded to at least
e50 � 5 � 1021 times larger by tend). The accelerated expansion of this amount dilutes any initial
inhomogeneity and spatial curvature until they become negligible in the observable universe today.

3.2. Framework for data analysis

3.2.1. Parameterizing the primordial power spectra

The power spectrum of the CMB anisotropy is determined by the power spectra of the curva-
ture and tensor perturbations. Most inflationary models predict scalar and tensor power spectra that
approximately follow power laws:

� 2� (k) � k3
�
(2 � 2)

��� �
k
� 2 � � kns−1 and

� 2
h(k) � 2k3

�
(2 � 2)

���
h+k

� 2 +�
h 	 k

� 2 � � knt . Here,
�

is the curvature perturbation in the comoving gauge, and h+ and h 	 are the
two polarization states of the primordial tensor perturbation. The spectral indices ns and nt vary
slowly with scale, or not at all. As spectral indices deviate more and more from scale invariance
(i.e., ns = 1 and nt = 0), the power-law approximation usually becomes less and less accurate. Thus,
in general, one must consider the scale dependent “running” of the spectral indices, dns

�
d lnk and

dnt
�
d lnk. We parameterize these power spectra by

� 2� (k) =
� 2� (k0) 
 k

k0 � ns(k0)−1+ 1
2 (dns � d ln k) ln(k � k0)

� (6)

� 2
h(k) =

� 2
h(k0) 
 k

k0 � nt (k0)+ 1
2 (dnt � d lnk) ln(k � k0)

� (7)
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where
� 2(k0) is a normalization constant, and k0 is some pivot wavenumber. The running, dn

�
d lnk,

is defined by the second derivative of the power spectrum, dn
�
d lnk � d2 � 2

�
d lnk2, for both the

scalar and the tensor modes, and is independent of k. This parameterization gives the definition of
the spectral index,

ns(k) − 1 � d ln
� 2�

d lnk
= ns(k0) − 1 +

dns

d lnk
ln 
 k

k0 � � (8)

for the scalar modes, and

nt(k) � d ln
� 2

h

d lnk
= nt(k0) +

dnt

d lnk
ln 
 k

k0 � � (9)

for the tensor modes. In addition, we re-parameterize the tensor power spectrum amplitude,
� 2

h(k0),
by the “tensor/scalar ratio r”, the relative amplitude of the tensor to scalar modes, given by12

r �
� 2

h(k0)� 2� (k0)
� (10)

Following notational conventions in Spergel et al. (2003), we use A(k0) for the scalar power spec-
trum amplitude, where A(k0) and

� 2� (k0) are related through

� 2� (k0) = 800 � 2 
 5
3 � 2 1

T 2
CMB

A(k0) (11)

� 2 � 95 � 10−9A(k0) � (12)

Here, TCMB = 2 � 725 � 106 ( � K). This relation is derived in Verde et al. (2003). One can use
equations (6), (8), and (9) to evaluate A, ns, and nt at a different wavenumber from k0, respectively.
Hence,

A(k1) = A(k0) 
 k1

k0 � ns(k0)−1+ 1
2 (dns � d lnk) ln(k1 � k0)

� (13)

We have 6 observables (A, r, ns, nt , dns
�
d lnk, dnt

�
d lnk), each of which can be compared to

predictions of an inflationary model.

3.2.2. Slow roll parameters

In the context of slow roll inflationary models, only three “slow-roll parameters”, plus the
amplitude of the potential, determine the six observables (A, r, ns, nt , dns

�
d lnk, dnt

�
d lnk). Thus,

12This definition of r agrees with the definition of T � S in the CAMB code (Lewis et al. 2000) and r in Leach et al.
(2002). We have modified CMBFAST (Seljak & Zaldarriaga 1996) accordingly to match the same convention.
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one can use the relations among the observables to either reduce the number of parameters to
four, or cross-check if the slow roll inflation paradigm is consistent with the data. The slow-roll
parameters are defined by (Liddle & Lyth 1992, 1993):

�
V � M2

pl

2

 V
�

V � 2

� (14)

�
V � M2

pl

 V
� �

V � � (15)

�
V � M4

pl

 V
�
V
� � �

V 2 � � (16)

where prime denotes derivatives with respect to the field
�

. Here, �
V quantifies “steepness” of the

slope of the potential which is positive-definite,
�

V quantifies “curvature” of the potential, and
�

V ,
(which is not positive-definite, but is unfortunately often denoted

� 2 in the literature because it is a
second order parameter), quantifies the third derivative of the potential, or “jerk”. All parameters
must be smaller than one for inflation to occur. We denote these “potential slow roll” parameters
with a subscript V to distinguish them from the “Hubble slow roll” parameters of Appendix A.
Gratton et al. (2003) discuss the equivalent set of parameters for the Ekpyrotic scenario.

Parameterization of slow roll models by �
V ,
�

V , and
�

V avoids relying on specific models, and
enables one to explore a large model space without assuming a specific model. Each inflation
model predicts the slow-roll parameters, and hence the observables. A standard slow roll analysis
gives observable quantities in terms of the slow roll parameters to first order as (see Liddle & Lyth
(2000) for a review),

� 2� =
V
�
M4

pl

24 � 2 �
V

� (17)

r = 16 �
V � (18)

ns − 1 = −6 �
V + 2

�
V = −

3r
8

+ 2
�

V � (19)

nt = −2 �
V = −

r
8
� (20)

dns

d lnk
= −16 �

V

�
V + 24 � 2

V + 2
�

V = −r
�

V +
3

32
r2 + 2

�
V =

2
3
�
(ns − 1)2 − 4

� 2
V � + 2

�
V � (21)

dnt

d lnk
= −4 �

V

�
V + 8 � 2

V = −
r
8

�
(ns − 1) +

r
8 � � (22)

The tensor tilt in inflation is always red, nt � 0. The equation nt = −r
�
8 is known as the consis-

tency relation for single-field inflation models (it weakens to an inequality for multi-field inflation
models). We use the relation to reduce the number of parameters. While we have also carried
out the analysis including nt as a parameter, and verified that there is a parameter space satisfying
the consistency relation, including nt obviously weakens the constraints on the other observables.
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Given that we find r is consistent with zero (§ 3.3), the running tensor index dnt
�
d lnk is poorly

constrained with our data set; thus, we ignore it and constrain our models using the other four
observables (A, r, ns, dns

�
d lnk) as free parameters.

3.3. Determining the power spectrum parameters

We use a Markov Chain Monte Carlo (MCMC) technique to explore the likelihood surface.
Verde et al. (2003) describe our methodology. We use the WMAP TT (Hinshaw et al. 2003) and
TE (Kogut et al. 2003) angular power spectra. To measure the shape of the spectrum (i.e., ns and
dns
�
d lnk) accurately, we want to probe the primordial power spectrum over as wide a range of

scales as possible. Therefore, we also include the CBI (Pearson et al. 2002) and ACBAR (Kuo
et al. 2002) CMB data, Lyman � forest data (Croft et al. 2002; Gnedin & Hamilton 2002), and the
2dFGRS large-scale structure data (Percival et al. 2001) in our likelihood analysis. We refer to the
combined WMAP+CBI+ACBAR data as WMAPext.

In total, the single field inflation model is described by an 8-parameter model: 4 parameters
for characterizing a Friedmann-Robertson-Walker universe (baryonic density � bh2, matter density

� mh2, Hubble constant in units of 100 kms−1Mpc−1 h, optical depth � ), and 4 parameters for the
primordial power spectra (A, r, ns, dns

�
d lnk). We need two further large-scale structure param-

eters, � and � p, to marginalize over the shape and the amplitude of the 2dFGRS power spectrum
(Verde et al. 2003). We run MCMC with these 10 parameters in order to get our constraints.

Table 1 shows results of our analysis for the WMAPext+ 2dFGRS + Lyman � data set. These
results have not changed significantly from the results for the WMAPext+ 2dFGRS data set. We
evaluate ns, A, and r in the fit at k0 = 0 � 002 Mpc−1. Thus, this table and the figures to follow
report the results for A and ns at k0 = 0 � 002 Mpc−1 . Note that Spergel et al. (2003) report these
quantities evaluated at k0 = 0 � 05 Mpc−1 (using equations (13) and (8)). There are 3 � 2 e–folds
between k0 = 0 � 002 Mpc−1 and k0 = 0 � 05 Mpc−1.

We did not find any tensor modes, r � 0 � 71. All cosmological parameters are consistent with
the best-fit running model of Spergel et al. (2003), which was obtained for a � CDM model with
no tensors and a running spectral index. Adding the extra parameter r does not improve the fit.

Our constraint on ns shows that the scalar power spectrum is nearly scale-invariant. One
implication of this result is that fluctuations were generated during accelerated expansion in nearly
de-Sitter space (Hawking 1982; Guth & Pi 1982; Starobinsky 1982; Bardeen et al. 1983), where
the equation of state of the scalar field is w � −1. Recently, Gratton et al. (2003) have shown
that there is only one other possibility for robustly obtaining adiabatic fluctuations with nearly
scale-invariant spectra: w � 1. The Ekpyrotic/Cyclic scenarios correspond to this case.
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Table 1. Parameters For Primordial Power Spectra: Single Field Inflation Model

Parameter WMAPext+2dFGRS+Lyman � a

ns(k0 = 0 � 002 Mpc−1) 1 � 10+0 � 07
−0 � 06

r(k0 = 0 � 002 Mpc−1) � 0 � 71
dns
�
d lnk −0 � 042+0 � 021

−0 � 020

A(k0 = 0 � 002 Mpc−1) 0 � 77
�

0 � 07

aThe quoted values are the mean and the 68% proba-
bility level of the 1–d marginalized likelihood. The other
cosmological parameters for this model and data set are
[ � bh2 = 0 � 023

�
0 � 001, � mh2 = 0 � 135

�
0 � 006, h = 0 � 74

�

0 � 03, � = 0 � 17
�

0 � 06, � 8 = 0 � 84+0 � 05
−0 � 04]. These values do

not shift significantly when parameter estimation is per-
formed on the WMAPext+2dFGRS data set. The 10–d
maximum likelihood point in the Markov Chain (120,000
steps) for this model is [ � bh2 = 0 � 024, � mh2 = 0 � 131, h =
0 � 77, n(k0 � 002) = 1 � 14, r(k0 � 002) = 0 � 43, dns

�
d lnk = −0 � 052,

A(k0 � 002) = 0 � 73, � = 0 � 197, � 8 = 0 � 85] where k0 � 002 is k0 =
0 � 002 Mpc−1.
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We find a marginal 2 � preference for a running spectral index, dns
�
d lnk = −0 � 042+0 � 021

−0 � 020 (WMAPext+2dFGRS+Lyman
� data set). This same preference was seen in the analysis without tensors carried out in Spergel
et al. (2003).

Figure 2 shows our constraint on ns as a function of k for the WMAPext+ 2dFGRS + Lyman
� data set. At each wavenumber k, we use equation (8) to convert ns(k0 = 0 � 002 Mpc−1) to ns(k)
at each wavenumber. Then, we evaluate the mean (solid line), 68% interval (shaded area), and
95% interval (dashed lines) from the MCMCs. This shows a hint that the spectral index is run-
ning from blue (ns � 1) on large scales to red (ns � 1) on small scales. In our MCMCs, for the
WMAPext+2dFGRS data set, 90% of models explored by the chain have a scalar spectral index
running from blue at k = 0 � 0007 Mpc−1 (l � 10) to red at k = 2 Mpc−1; 4% have a blue index at
both scales; 2% have a red index at both scales, and 4% have a red index at large scales and a blue
index at small scales. When Lyman � forest data is added, the indication becomes stronger: 96%
of models go from a blue index at large scales to a red index at small scales, 2% have a red index
at both scales, 1% have a blue index at both scales, and 1% go from red to blue.

One-loop correction and renormalization usually predict running mass and/or running cou-
pling constant, giving some dns

�
d lnk. Detection of it implies interesting quantum phenomena

during inflation (see Lyth & Riotto (1999) for a review). For the running of the scalar spectral
index (equation 21),

dns

d lnk
= 2

�
V +

2
3

�
(ns − 1)2 − 4

� 2
V � � (23)

Since the data requires ns � 1 (see Table 1), (ns − 1)2
�

0 � 01. It is especially small when ns −
1 � 2

�
V , (see Case A and Case D in § 3.4.2). Therefore, if dns

�
d lnk is large enough to detect,

dns
�
d lnk � 10−2, then dns

�
d lnk must be dominated by 2

�
V , a product of the first and the third

derivatives of the potential (equation (16)). The hint of dns
�
d lnk in our data can be interpreted

as
�

V � 1
2dns
�
d lnk = −0 � 02

�
0 � 01. However, obtaining the running from blue to red, which is

suggested by the data, may require fine-tuned properties in the shape of the potential. More data
are required to determine whether the hints of a running index are real.

3.4. Single field models confront the data

3.4.1. Testing a specific inflation model:
��� 4

As a prelude to showing constraints on broad classes of inflationary models, we first illustrate
the power of the data using the example of the minimally-coupled V =

��� 4
�
4 model, which is often

used as an introduction to inflationary models (Linde 1990). We show that this textbook example
is unlikely.
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The Friedmann and continuity equations for a homogeneous scalar field lead to the slow-roll
parameters, which one can use in conjunction with the equations of § 3.2.2 in order to obtain
predictions for the observables. For the potential V (

�
) =

� � 2
�
4, one obtains the potential slow roll

parameters as: �
V = 8

M2
pl�
2
� �

V = 12
M2

pl�
2
� �

V = 96
M4

pl�
4
� (24)

The number of e-foldings remaining till the end of inflation is defined by

N = � tend

t
Hdt � 1

M2
pl
� ��

end

V
V
� d

�
=

1
8

� � 2 −
� 2

end

M2
pl � � (25)

where �
V (
�

end) = 1 defines the end of inflation. Assuming
�

end � �
, taking the horizon exit scale

as
� � � 8NMpl and N = 50, one obtains ns = 0 � 94 and r = 0 � 32 using equations (18) and (19). As

dns
�
d lnk is negligible for this model, we use dns

�
d lnk = 0.

We maximize the likelihood for this model by running a simulated annealing code. We fit
to WMAPext+2dFGRS data, varying the following parameters: � bh2, � mh2, h, � , A13, � , and � p,
while keeping ns, dns

�
d lnk, and r fixed at the

��� 4 values. The maximum likelihood model ob-
tained has [ � bh2 = 0 � 022, � mh2 = 0 � 135, � = 0 � 07, A = 0 � 67, h = 0 � 69, � 8 = 0 � 76]. This best-fit model
is compared in Table 2 to the corresponding model with the full set of single field inflationary pa-
rameters. The

��� 4 model is displaced from the maximum likelihood generic single field model by��� 2
e f f = 16, where

� 2
e f f = −2ln � and � is the likelihood (see Verde et al. (2003)). Since the relative

likelihood between the models is exp(−8), and the number of degrees of freedom is approximately
three,

� � 4 is disfavored.

This result holds only for Einstein gravity. When a non-minimal coupling of the form
� � 2R

(
�

= 1
�
6 is the conformal coupling) is added to the Lagrangian, the coupling changes the dynamics

of
�

. This model predicts only a tiny amount of tensor modes (Komatsu & Futamase 1999; Hwang
& Noh 1998) in agreement with the data.

One can perform a similar analysis on any given inflationary model to see what constraints the
data put on it. Rather than attempt this Herculean task, in the following section we simply use our
constraints on ns, dns

�
d lnk, and r and the predictions of various classes of single field inflationary

models for these parameters in order to put broad constraints on them.

13While A is an inflationary parameter, it is directly related to the self-coupling � which we do not know; thus, we
treat it as a parameter.
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3.4.2. Testing a broad class of inflation models

Naively, the parameter space in observables spanned by the slow roll parameters appears to be
large. We shall show below that “viable” slow roll inflation models (i.e. those can sustain inflation
for a sufficient number of e-folds to solve cosmological problems) actually occupy significantly
smaller regions in the parameter space.

Hoffman & Turner (2001) have investigated generic predictions of slow roll inflation models
by using a set of inflationary flow equations (see Appendix A for a detailed description). In par-
ticular Kinney (2002) uses Monte Carlo simulations to extend the slow roll approximations to fifth
order. Hoffman & Turner (2001) and Kinney (2002) find “attractors” corresponding to fixed points
(where all derivatives of the flow parameters vanish); models cluster strongly near the power-law
inflation predictions, r = 8(1 − ns) (see § 3.4.4), and on the zero tensor modes, r = 0.

Following Kinney (2002), we compute a million realizations of the inflationary flow equations
numerically, truncating the flow equation hierarchy at eighth order and evaluating the observables
to second order in slow roll using equations (A15)–(A17). We marginalize over the ambiguity of
converting between

�
and k, introduced by the details of reheating and the energy density during

inflation by adopting the Kinney (2002) Monte Carlo approach. The observable quantities of a
given realization of the flow equations are evaluated at a specific value of e-folding, N. However,
observable quantities are measured at a specific value of k. Therefore, we need to relate N to k.
This requires detailed modeling of reheating, which carries an inherent uncertainty. We attempt to
marginalize over this by randomly drawing N values from a uniform distribution N = [40 � 70].

Figure 3 shows part of the parameter space of viable slow roll inflation models, with the
WMAP 95% confidence region shown in blue. Each point on these panels is a different Monte
Carlo realization of the flow equations, and corresponds to a viable slow roll model. Not all points
that are viable slow roll models correspond to specific physical models constructed in the literature.
Most of the models cluster near the attractors, sparsely populating the rest of the large parameter
space allowed by the slow roll classification. It must be emphasized that these scatter plots should

Table 2. Goodness-of-fit Comparison for
��� 4 Model

Model
� 2

e f f

���

Best-fit inflation 1464/1379� � 4 model 1480/1382
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not be interpreted in a statistical sense since we do not know how the initial conditions for the
universe are selected. Even if a given realization of the flow equations does not sit on the attractor,
this does not mean that it is not favored. Each point on this plot carries equal weight, and each
is a viable model of inflation. Notice that the WMAP data do not lie particularly close to the
r = 8(1 − ns) “attractor” solution, at the 2- � level, but is quite consistent with the r = 0 attractor.

One may categorize slow roll models into several classes depending upon where the predic-
tions lie on the parameter space spanned by ns, dns

�
d lnk, and r (Dodelson et al. 1997; Kinney

1998). Each class should correspond to specific physical models of inflation. Hereafter, we drop
the subscript V unless there is an ambiguity — it should otherwise be implicitly assumed that we
are referring to the standard slow roll parameters. We categorize the models on the basis of the
curvature of the potential

�
, as it is the only parameter that enters into the relation between ns and

r (equation (19)), and between ns and dns
�
d lnk −2

�
(equation (21)). Thus,

�
is the most important

parameter for classifying the observational predictions of the slow roll models. The classes are
defined by

(A) negative curvature models,
�
� 0,

(B) small positive (or zero) curvature models, 0
� � �

2 � ,

(C) intermediate positive curvature models, 2 � � � �
3 � , and

(D) large positive curvature models,
�
� 3 � .

Each class occupies a certain region in the parameter space. Using
�

= (ns − 1) �
�
[2( � − 3)], where�

= � � , one finds

(A) ns � 1, 0
�

r � 8
3 (1 − ns), 0 � dns

�
d lnk − 2

�
� 2

3 (1 − ns)2,

(B) ns � 1, 8
3 (1 − ns)

�
r

�
8(1 − ns), −2(1 − ns)2 �

dns
�
d lnk − 2

� � 2
3 (1 − ns)2,

(C) ns � 1, r � 8(1 − ns), dns
�
d lnk − 2

�
� −2(1 − ns)2, and

(D) ns � 1, r � 0, dns
�
d lnk − 2

�
� 0.

To first order in slow roll, the subspace (ns, r) is uniquely divided into the four classes, and the
whole space spanned by these parameters is defined by this classification. The division of the
other subspace (ns, dns

�
lnk) is less unique, and dns

�
d lnk � 2

�
+ 2

3 (1 − ns)2 is not covered by this
classification. To higher order in slow roll, these boundaries only hold approximately - for instance,
Case C can have a slightly blue scalar index, and Case D can have a slightly red one.
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We summarize basic predictions of the above model classes to first order in slow roll using
the relation between r and ns (equation (19)) rewritten as

r =
8
3

(1 − ns) +
16
3

� � (26)

This implies:

(A) negative curvature models predict
�
� 0 and 1 − ns � 0; the second term nearly cancels the

first to give r too small to detect,

(B) small positive curvature models predict 1 − ns � 0 and
�
� 0; a large r is produced,

(C) intermediate positive curvature models predict 1 − ns � 0 and
�
� 0; a large r is produced,

and

(D) large positive curvature models predict 1 − ns � 0 and
�
� 0; the first term nearly cancels the

second to give r too small to detect.

The cancellation of the terms in Case A and Case D implies ns −1 � 2
�
: the steepness of the poten-

tial in Case A and Case D is insignificant compared to the curvature, � � � � �
. On the other hand, in

Case B and Case C the steepness is larger than or comparable to the curvature, by definition; thus,
non-detection of r can exclude many models in Case B and Case C. As we have shown in § 3.4.1,
a minimally-coupled

��� 4 model, which falls into Case B, is excluded at high significance, largely
because of our non-detection of r (see also § 3.4.4).

For an overview, Figure 4 shows the Monte Carlo flow equation realizations corresponding
to the model classes A–D above on the (ns, r), (ns, dns

�
d lnk), and (r, dns

�
d lnk) planes, for the

WMAPext+2dFGRS+Lyman � data set.

In Table 3, we show the ranges taken by the observables ns, r and dns
�
d lnk in the Monte

Carlo realizations that remain after throwing out all the points which are outside at least one of
the joint-95% confidence levels. These points have been separated into the model classes A–D via
their

�
V . These constraints were calculated as follows. First, we find the Monte Carlo realizations

of the flow equations from each model class that fall inside all the joint-95% confidence levels
from the WMAPext+2dFGRS and WMAPext+2dFGRS+Lyman � data sets (for instance, for the
WMAPext+2dFGRS+Lyman � data set, the models shown on Figure 4). Then we find for each
model class the maximum and minimum values predicted for each of the observables within these
subsets. These constraints mean that only those models (within each class) predicting values for
the observables that lie outside these limits are excluded by these data sets at 95% CL. Note that
the best-fit model within this parameter space has a

� 2
e f f

���
= 1464

�
1379. Here, recall again that
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the observables were evaluated to second order in slow roll in these calculations. This is the reason
that the Class C range in ns goes slightly blue and the Class D range in ns goes slightly red; the
divisions of the

�
V classification are only exact to first order in slow roll.

In the following subsections we will discuss in more detail the constraints on specific phys-
ical models that fall into the classes A–D. For a given class, we will plot only the flow equation
realizations falling into that category that are consistent with the 95% confidence regions of all the
planes (ns, r), (ns, dns

�
d lnk) and (r, dns

�
d lnk).

Note that very few models predict a “bad power law”, or
�
dns
�
d lnk

�
� 0 � 05.

3.4.3. Case A: negative curvature models
�
� 0

The top row of Figure 5 shows the Monte Carlo points belonging to Case A which are consis-
tent with all the joint-95% confidence regions of the observables shown in the figure.

The negative
�

models often arise from a potential of spontaneous symmetry breaking (e.g.,
new inflation - Albrecht & Steinhardt (1982); Linde (1982)).

We consider negative-curvature potentials in the form of V = � 4[1 − (
� � � )p] where p � 2.

We require
�
� � for the form of the potential to be valid, and � determines the energy scale of

inflation, or the energy stored in a false vacuum. One finds that this model always gives a red tilt
ns � 1 to first order in slow roll, as ns − 1 = −6 � − 2

� � �
� 0.

For p = 2, the number of e-folds at
�

before the end of inflation is given by N � ( � 2
�
2M2

pl) ln( � � � ),
where we have approximated

�
end � � . By using the same approximation, one finds ns − 1 �

−4(Mpl
� � )2, and r � 32(

� 2M2
pl

� � 4) � 8(1 − ns)e−N(1−ns ). In this class of models, ns cannot be very
close to 1 without � becoming larger than mpl. For example, ns = 0 � 96 implies � � 10Mpl � 2mpl.
For this class of models, r has a peak value of r � 0 � 06 at ns = 0 � 98 (assuming N = 50). Even this
peak value is too small for WMAP to detect. We see from Table 3 that this model is consistent
with the current data, but requires � � mpl to be valid.

For p � 3, ns − 1 � −(2
�
N)(p − 1)

�
(p − 2) or 0 � 92

�
ns � 0 � 96 for N = 50 regardless of a value

of � , and r � 4p2(Mpl
� � )2(

� � � )2(p−1) is negligible as
� � � . These models do not lie in the joint

2– � contour.

The negative
�

model also arises from the potential in the form of V = � 4[1 + � ln(
� � � )], a

one-loop correction in a spontaneously broken supersymmetric theory (Dvali et al. 1994). Here
the coupling constant � should be smaller than of order 1. In this model

�
rolls down towards the

origin. One finds ns − 1 = −(1 + 3
2 � )
�
N which implies 0 � 96 � ns � 0 � 98 for 1 � � � 0 (this formula
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Table 3. Properties of Inflationary Models Present Within the Joint-95% Confidence Regiona

Model WMAPext+2dFGRS+Lyman �

A (
�
� 0) (6 � 10−6)b�

r
�

0 � 11
0 � 96

�
ns

�
1 � 00

−0 � 01
�

dns
�
d lnk

�
0 � 001

B (0
� � �

2 � ) (7 � 10−4)b�
r

�
0 � 25

0 � 96
�

ns
�

1 � 00
−0 � 01

�
dns
�
d lnk

�
0 � 002

C (2 � � � �
3 � ) (0 � 002)b�

r
�

0 � 39
0 � 97

�
ns

�
1 � 02

−0 � 02
�

dns
�
d lnk

�
0 � 0002

D (
�
� 3 � ) 0 � 0 �

r
�

0 � 39
0 � 99

�
ns

�
1 � 12

−0 � 07
�

dns
�
d lnk

�
0 � 0

aThe ranges taken by the predicted observables of slow roll models (to second order in slow roll)
within the joint 95% CLs from the WMAPext+2dFGRS+Lyman � data set. The results from the
WMAPext+2dFGRS data set are similar, and do not change the conclusions.

bThe lower value of r does not represent a detection, but rather the minimal level of tensors
predicted by any point in the Monte Carlo that falls within in this class and is consistent with the
data. We include the lower limit to help set goals for future CMB polarization missions.
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is not valid when � = 0 or
�

= � ). Since r = 8 �
�
N = 8 � (1+ 3

2 � )−1(1−ns) = 0 � 016( �
�
0 � 1), the tensor

mode is too small for WMAP to detect, unless the coupling � takes its maximal value, � � 1. This
type of model is consistent with the data.

3.4.4. Case B: small positive curvature models 0
� � �

2 �
The second row of Figure 5 shows the Monte Carlo points belonging to Case B which are

consistent with all the joint-95% confidence regions of the observables shown in the figure.

The “small” positive
�

models correspond to monomial potentials for 0 �
�
� 2 � and expo-

nential potentials for
�

= 2 � . The monomial potentials take the form of V = � 4(
� � � )p where p � 2,

and the exponential potentials V = � 4 exp(
� � � ). The zero

�
model is V = � 4(

� � � ). To first order in
slow roll, the scalar spectral index is always red, as ns − 1 = −6 � + 2

� � −4 � � 0. The zero
�

model
marks a border between the negative

�
models and the positive

�
models, giving r = 8

3 (1 − ns).

The monomial potentials often appear in chaotic inflation models (Linde 1983), which require
that

�
be initially displaced from the origin by a large amount, � mpl, in order to avoid fine-tuned

initial values for
�

. The monomial potentials can have a period of inflation at
���

mpl, and inflation
ends when

�
rolls down to near the origin. For p = 2, inflation is driven by the mass term, which

gives
�

= 2 � NMpl, ns = 1 − 2
�
N = 0 � 96, r = 8

�
N = 4(1 − ns) = 0 � 16, and dns

�
d lnk = 2

�
N2 = (1 −

ns)2
�
2 = 0 � 8 � 10−3. For p = 4, inflation is driven by the self-coupling, which gives

�
= 2 � 2NMpl,

ns = 1 − 3
�
N = 0 � 94, r = 16

�
N = 16

3 (1 − ns) = 0 � 32, and dns
�
d lnk = 3

�
N2 = (1 − ns)2

�
3 = 1 � 2 � 10−3.

The most striking feature of the small positive
�

models is that the gravitational wave amplitude
can be large, r � 0 � 16. Our data suggest that, for monomial potentials to lie within the joint
95% contour, r � 0 � 25 (Table 3). A

��� 4 model is excluded at � 3– � (§ 3.4.1), and any monomial
potentials with p � 4 are also excluded at high signifcance. Models with p = 2 (mass term inflation)
are consistent with the data.

The exponential potentials appear in the Brans–Dicke theory of gravity (Brans & Dicke 1961;
Dicke 1962) conformally transformed to the Einstein frame (the extended inflation models) (La &
Steinhardt 1989). One finds ns = 1−( � � Mpl)2, r = 8(1−ns), and dns

�
d lnk = 0. Thus, the exponential

potentials predict an exact power-law spectrum and significant gravitational waves for significantly
tilted spectra. Since � = NM2

pl

�
(
�

−
�

end), ns = 1− [NMpl
�
(
�

−
�

end)]2. The 95% range for ns in Table
3 implies that

�
−
�

end � 5NMpl � 250Mpl � 50mpl.

The exponential potentials mark a border between the small positive
�

models and the positive
intermediate

�
models described below.
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3.4.5. Case D: large positive curvature models
�
� 3 �

Before describing Case C, it is useful to describe Case D first. The fourth row of Figure 5
shows the Monte Carlo points belonging to Case D which are consistent with all the joint-95%
confidence regions of the observables shown in the figure.

The “large” positive curvature models correspond to hybrid inflation models (Linde 1994),
which have recently attracted much attention as an R-invariant supersymmetric theory naturally
realizes hybrid inflation (Copeland et al. 1994; Dvali et al. 1994). While it is pointed out that
supergravity effects add too large an effective mass to the inflaton field to maintain inflation, the
minimal Kähler supergravity does not have such a large mass problem (Copeland et al. 1994; Linde
& Riotto 1997). The distinctive feature of this class of models with

�
� 3 � is that the spectrum has

a blue tilt, ns − 1 = −6 � + 2
�
� 0, to first order in slow roll.

A typical potential is a monomial potential plus a constant term, V = � 4[1 + (
� � � )p], which

enables inflation to occur for a small value of
�

,
�
� mpl. At first sight, inflation never ends for this

potential, as the constant term sustains the exponential expansion forever. Hybrid inflation models
postulate a second field � which couples to

�
. When

�
rolls slowly on the potential, � stays at the

origin and has no effect on the dynamics. For a small value of
�

inflation is dominated by a false
vacuum term, V (

� � � = 0) � � 4. When
�

rolls down to some critical value, � starts moving toward
a true vacuum state, V (

� � � ) = 0, and inflation ends. A numerical calculation (Linde 1994) suggests
that the potential is described by

�
only until

�
reaches a critical value. When

�
reaches the critical

value, inflation suddenly ends and � need not be considered. Thus, we include the hybrid models
in our discussion of single-field models.

For p = 2, one finds that N � 1
2 ( � � Mpl)2 ln(

� � �
end) � 50, which, in turn, implies � � 10Mpl �

2mpl for ln(
� � �

end) � 1. The spectral slope is estimated as ns � 1 + 4(Mpl
� � )2 � 1 � 04, and the

tensor/scalar ratio, r � 32(
� � � )2(Mpl

� � )2 = 8(
� � � )2(ns −1), is negligible as inflation occurs at

� �
� . The running is also negligible, as dns

�
d lnk � −64(

� � � )2(Mpl
� � )4 = −4(

� � � )2(ns − 1)2 � 10−2.
This type of model lies within the joint 95% contours.

One-loop correction in a softly broken supersymmetric theory induces a logarithmically run-
ning mass, V = � 4 � 1 + (

� � � )2 � 1 + � ln(
� �

Q) ��� , where � is a coupling constant and Q is a renor-
malization point. Since ns is practically determined by V

� �
, this potential gives rise to a logarithmic

running of ns (Lyth & Riotto 1999). These models would lie in the region occupied by the Monte
Carlo points that have a large, negative dns

�
d lnk. This type of model is consistent with the data.
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3.4.6. Case C: intermediate positive curvature models 2 � � � �
3 �

The third row of Figure 5 shows the Monte Carlo points belonging to Case C which are
consistent with all the joint-95% confidence regions of the observables shown in the figure.

The “intermediate” positive curvature models are defined, to first order in slow roll, as having
a red tilt, ns − 1 = −6 � + 2

�
� 0, or the exactly scale-invariant spectrum, ns − 1 = 0, while not being

described by monomial or exponential potentials. These conditions lead to a parameter space
where 2 � � � �

3 � . Here we discuss only examples of physical models that do not solely live in
Case C, but briefly pass through it as they transition from Case D to Case B or Case A.

The transition from Case D to Case B may correspond to a special case of hybrid inflation
models described in the previous subsection (Case D), V = � 4[1 + (

� � � )p]. When
� � � , the

potential becomes Case B potential, V � � 4(
� � � )p, and the spectrum is red, ns � 1. When

� � � ,
the potential drives hybrid inflation, and the spectrum is blue, ns � 1. On the other hand, when�

� � , the potential takes a parameter space somewhere between Case B and Case D, which
corresponds to Case C. One may argue that this model requires fine-tuned properties in that we just
transition from one regime to the other. However, the Case C regime has an interesting property:
the spectral index ns runs from red on large scales to blue on small scales, as

�
undergoes the

transition from Case B to Case D. This example has the wrong sign for the running of the index
compared to the data at the � 2- � level.

Linde & Riotto (1997) is one example of a transition from Case D to Case A. They consider
a supergravity-motivated hybrid potential with a one-loop correction, which can be approximated
during inflation as

V � � 4 � 1 + � ln(
� �

Q) +
�

(
� � � )4 � � (27)

Suppose that the one-loop correction is negligible in some early time, i.e.,
� � Q. The spectrum

is blue. (The third term is practically unimportant, as inflation is driven by the first term at this
stage.) If the loop correction becomes important after several e-folds, then ns changes from blue to
red, as the loop correction gives a red tilt as we saw in § 3.4.3. This example is consistent with the
data. The transition (from Case D to Case A) is possible only when � and Q conspire to balance
the first term and the second term right at the scale accessible to our observations.



– 21 –

4. MULTIPLE FIELD INFLATION MODELS

4.1. Framework

In general, a candidate fundamental theory of particle physics such as a supersymmetric the-
ory requires not only one, but many other scalar fields. It is thus naturally expected that during
inflation there may exist more than one scalar field that contributes to the dynamics of inflation.

In most single-field inflation models, the fluctuations produced have an almost scale-invariant,
Gaussian, purely adiabatic power spectrum whose amplitude is characterized by the comoving
curvature perturbation, �� , which remains constant on superhorizon scales. They also predict tensor
perturbations with the consistency condition in equation (20).

With the addition of multiple fields, the space of possible predictions widens considerably.
The most distinctive feature is the generation of entropy, or isocurvature, perturbations between
one field and the other. The entropy perturbation, ��

, can violate the conservation of �� on super-
horizon scales, providing a source for the late-time evolution of �� which weakens the single field
consistency condition into an upper bound on the tensor/scalar ratio (Polarski & Starobinsky 1995;
Sasaki & Stewart 1996; Garcia-Bellido & Wands 1996). Limits on the possible level of the entropy
perturbation thus discriminate between the multiple field models and the single field models. In
this section, we consider the minimal extension to single-field inflation – a model consisting of two
minimally-coupled scalar fields.

4.2. Correlated Adiabatic/Isocurvature Fluctuations from Double-Field Inflation

The WMAP data confirm that pure isocurvature fluctuations do not dominate the observed
CMB anisotropy. They predict large-scale temperature anisotropies that are too large with respect
to the measured density fluctuations, and have the wrong peak/trough positions in the temperature
and polarization power spectra (Hu & White 1996; Page et al. 2003). The WMAP observations
limit but do not preclude the possibility of correlated mixtures of isocurvature and adiabatic pertur-
bations, which is a generic prediction of two-field inflation models. Both isocurvature and adiabatic
perturbations receive significant contributions from at least one of the scalar fields to produce the
correlation (Langlois 1999; Langlois & Riazuelo 2000; Gordon et al. 2001; Bartolo et al. 2001,
2002; Amendola et al. 2002; Wands et al. 2002). We focus on these mixed models in this section.

Let �� rad and ��
rad be the curvature and entropy perturbations deep in the radiation era, respec-

tively. At large scales, the temperature anisotropy is given by (Langlois 1999):
�

T
T

=
1
5

� �� rad − 2 ��
rad
� � (28)
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in addition to the integrated Sachs–Wolfe effect. The entropy perturbation, ��
rad ����� cdm

� � cdm −
(3
�
4) ����� � ��� , remains constant on large scales until re-entry into the horizon. If �� rad and ��

rad have
the same sign (correlated), then the large scale temperature anisotropy is reduced. If they have
opposite signs (anti-correlated), then the temperature anisotropy is increased. Spergel et al. (2003)
find that there is an apparent lack of power at the very largest scales in the WMAP data; thus, one
of the motivations of this study is to see whether a correlated ��

rad can provide a better fit to the
WMAP low-l data than a purely adiabatic model.

The evolution of the curvature/entropy perturbations from horizon-crossing to the radiation-
dominated era can be parameterized by a transfer matrix (Amendola et al. 2002),� �� rad��

rad � = 
 1 TRS

0 TSS �
� ������ � � k=aH

� (29)

Here, TRR = 1 and TSR = 0 because of the physical requirement that �� is conserved for purely
adiabatic perturbations, and that �� cannot source ��

. All the quantities in equation (29) are weakly
scale-dependent, and may be parameterized by power-laws. Hence, we write this equation as�� rad = Ark

n1 �ar + Ask
n3 �as � (30)��

rad = Bkn2 �as � (31)

where �ar and �as are independent Gaussian random variables with unit variance,
� �ar �as � = � rs. The

cross-correlation spectrum is given by
� 2

RS(k) � (k3
�
2 � 2)

� �� rad ��
rad � = AsBkn2+n3 . One may define

the correlation coefficient using an angle
�

as

cos
� �

� �� rad ��
rad �� �� 2

rad � 1 � 2 � �� 2
rad � 1 � 2 =

sign(B)Askn3	
A2

r k2n1 + A2
s k2n3

� (32)

where −1
�

cos
� �

1. Thus, in general, six parameters (Ar, As, cos
�

, n1, n2, n3) are needed to
characterize the double-inflation model with correlated adiabatic/isocurvature perturbations, while
cos
�

is scale-dependent. In order to simplify our analysis, we neglect the scale-dependence of
cos
�

; thus, n1 = n3 
= n2 and cos
�

= sign(B)As
�
A. The power spectra are written as

� 2� (k) �
(k3
�
2 � 2)

� �� 2
rad � = (A2

r + A2
s )k2n1 � A2knad−1, and

� 2� (k) � (k3
�
2 � 2)

� �� 2
rad � = B2k2n2 � A2 f 2

isokniso−1. We
have defined nad − 1 � 2n1 and niso − 1 � 2n2 to coincide with the standard notation for the scalar
spectral index. The “isocurvature fraction” defined by fiso � B

�
A determines the relative amplitude

of ��
to �� . The cross-correlation spectrum is then written as

� 2
RS(k) = cos

� 	 � 2� (k)
� 2� (k) =

A2 fiso cos
�

k(nad+niso) � 2−1.

The temperature and polarization anisotropies are given by these power spectra:

Cad
l � A2 � dk

k

 k

k0 � nad−1 �
gad

l (k) � 2 � (33)
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Ciso
l � A2 f 2

iso � dk
k

 k

k0 � niso−1 �
giso

l (k) � 2 � (34)

Ccorr
l � A2 fiso cos

� � dk
k

 k

k0 � (nad+niso) � 2−1 �
gad

l (k)giso
l (k) � � (35)

and the total anisotropy is Ctot
l = Cad

l + Ciso
l + 2Ccorr

l . Here, gl(k) is the radiation transfer func-
tion appropriate to adiabatic or isocurvature perturbations of either temperature or polarization
anisotropies. Note that the quantities nad , niso, and fiso are defined at a specific wavenumber k0,
which we take to be k0 = 0 � 05 Mpc−1 in the MCMC. To translate the constraint on fiso to any other
wavenumber, one uses

fiso(k1) = fiso(k0) 
 k1

k0 � (niso−nad ) � 2
� (36)

We can restrict fiso � 0 without loss of generality. Since we can remove A by normalizing to the
overall amplitude of fluctuations in the WMAP data, we are left with 4 parameters, nad , niso, fiso,
and cos

�
. We neglect the contribution of tensor modes, as the addition of tensors goes in the

opposite direction in terms of explaining the low amplitude of the low-l TT power spectrum. We
also neglect the scale-dependence of nad and niso, as they are not well constrained by our data sets.

We fit to the WMAPext+2dFGRS and WMAPext+2dFGRS+Lyman � data sets with the 11
parameter model ( � bh2, � mh2, h, � , nad , niso, fiso, cos

�
, A, � , � p). The results of the fit for

the double inflation model parameters are shown in Table 4. Figure 6 shows the cumulative
distribution of fiso. The best-fit non-primordial cosmological parameter constraints are very similar
to the single field case.

While the fit tries to reduce the large-scale anisotropy with an admixture of correlated isocur-
vature modes as expected (note that cos

�
� 0 corresponds to �� rad and ��

rad having the same sign,
from the definition of initial conditions in the CMBFAST code), this only leads to a small reduc-
tion in amplitude at the quadrupole. Table 5 compares the goodness-of-fit for this model along with
the maximum likelihood models for the � CDM and single field inflation cases. Because

� 2
e f f

���
is not improved by the addition of three new parameters and considerable physical complexity,
we conclude that the data do not require this model. This implies that the initial conditions are
consistent with being fully adiabatic.

5. SMOOTHNESS OF THE INFLATON POTENTIAL

Spergel et al. (2003) point out that there are several sharp features in the WMAP TT angular
power spectrum that contribute to the reduced-

� 2
e f f for the best-fit model being � 1 � 09. The large� 2

e f f may result from neglecting 0.5–1% contributions to the WMAP TT power spectrum covari-
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Table 4. Cosmological Parameters: Adiabatic + Isocurvature Model

Parameter WMAPext+2dFGRS+Lyman �

fiso(k0 = 0 � 05 Mpc−1) � 0 � 33a

nad 0 � 95
�

0 � 03
niso 1 � 29+0 � 50

−0 � 56

cos
�

−0 � 76+0 � 18
−0 � 16

aThe constraint on the isocurvature fraction, fiso, is a 95% upper limit.

bThe other cosmological parameters for this model and data set are [ � bh2 = 0 � 023
�

0 � 001, � mh2

= 0 � 131
�

0 � 006, h = 0 � 072
�

0 � 04, � = 0 � 14
�

0 � 06, � 8 = 0 � 81
�

0 � 04]. These values do not shift
significantly when parameter estimation is performed on the WMAPext+2dFGRS data set.

Table 5. Goodness-of-Fit Comparison for Adiabatic/Isocurvature Model

Model
� 2

e f f

���
a

� CDM 1468/1381
Single field inflation 1464/1379
Adiabatic/Isocurvature 1468/1378

aThese
� 2

e f f values are for the
WMAPext+2dFGRS data set. Here
we do not give

� 2
e f f for the Lyman

� data, as the covariance between the
data points is not known (Verde et al.
2003).
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ance matrix; for example, gravitational lensing of the CMB, beam asymmetry, and non-Gaussianity
in noise maps. When included, these effects will likely improve the reduced-

� 2
e f f of the best-fit

� CDM model. At the moment we cannot attach any astrophysical reality to these features. Similar
features appear in Monte Carlo simulations.

While we do not claim these glitches are cosmologically significant, it is intriguing to consider
what they might imply if they turn out to be significant after further scrutiny.

In this section we investigate whether the reduced-
� 2

e f f is improved by trying to fit one or
more of these “glitches” with a feature in the inflationary potential. Adams et al. (1997) show
that a class of models derived from supergravity theories naturally gives rise to inflaton potentials
with a large number of sudden downward steps. Each step corresponds to a symmetry-breaking
phase transition in a field coupled to the inflaton, since the mass changes suddenly when each
transition occurs. If inflation occurred in the manner suggested by these authors, a spectral feature
is expected every 10-15 e-folds. Therefore, one of these features may be visible in the CMB or
large-scale structure spectra.

We use the formalism adopted by Adams et al. (2001), and model the step by the potential

Vstep(
�

) =
1
2

m2 � 2 � 1 + c tanh 
 � −
�

s

d ��� � (37)

where
�

is the inflaton field, and the potential has a step starting at
�

s with amplitude and gradient
determined by c and d respectively. In physically realistic models, the presence of the step does
not interrupt inflation, but affects density perturbations by introducing scale-dependent oscillations.
Adams et al. (2001) describe the phenomenology of these models: the sharper the step, the larger
the amplitude and longevity of the “ringing.” For our calculations of the power spectrum in these
models, we numerically integrate the Klein–Gordon equation using the prescription of Adams et al.
(2001).

We also phenomenologically model a dip in the inflaton potential using a toy model of a
Gaussian dip centered at

�
s with height c and width d:

Vdip(
�

) =
1
2

m2 � 2 
 1 − c exp � ( � −
�

s)2

2d2 � � � (38)

We fix the non-primordial cosmological parameters at the maximum likelihood values for
the � CDM model fitted to the WMAPext data, [ � bh2 = 0 � 022, � mh2 = 0 � 13, � = 0 � 11, A = 0 � 74,
h = 0 � 72]. We then run simulated annealing codes for only the three parameters:

�
s, c, and d,

for each potential, fitting to the WMAP TT and TE data only. For this section, since this model
predicts sharp features in the angular power spectrum, we had to modify the standard CMBFAST
splining resolution, splining at

�
l = 1 for 2

�
l � 50 and

�
l = 5 for l � 50.
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The best-fit parameters found for each potential are given in Table 6, along with the
� 2

e f f for
the WMAP TT and TE data. Figure 7 shows these models plotted along with the WMAP TT
data. The best-fit models predict features in the TE spectrum at specific multipoles, which are well
below detection, given the current uncertainties. The step model differs from the � CDM model by��� 2

e f f = 10, the dip model by
��� 2

e f f = 6. We are not claiming that these are the best possible models
in this parameter space, only that these are the best-fit models found in 8 simulated annealing runs.
Note that the models with features were not allowed the freedom to improve the fit by adjusting
the cosmological parameters.

A very small fractional change in the inflaton potential amplitude, c � 0 � 1%, is sufficient
to cause sharp features in the angular power spectrum. Models with much larger c would have
dramatic effects that are not seen in the WMAP angular power spectrum.

These models also predict sharp features in the large-scale structure power spectrum. Figure 8
shows the matter power spectra for the best-fit step/dip models. Forthcoming large-scale structure
surveys may look for the presence of such features, and test the viability of these models.

6. CONCLUSIONS

WMAP has made six key observations that are of importance in constraining inflationary
models.

(a) The universe is consistent with being flat (Spergel et al. 2003).

(b) The primordial fluctuations are described by random Gaussian fields (Komatsu et al. 2003).

(c) We have shown that the WMAP detection of an anti-correlation between CMB temperature

Table 6. Best-Fit Models with Potential Featuresa

Model
�

s (Mpl) c d (Mpl) WMAP
� 2

e f f

���

Step 15.5379 0.00091 0.01418 1422/1339
Dip 15.51757 0.00041 0.00847 1426/1339

� CDM N/A N/A N/A 1432/1342

aWe give as many significant figures as are needed in order to reproduce our results.
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and polarization fluctuations at � � 2 � is a distinctive signature of adiabatic fluctuations on
superhorizon scales at the epoch of decoupling. This detection agrees with a fundamental
prediction of the inflationary paradigm.

(d) In combination with complementary CMB data (the CBI and the ACBAR data), the 2dF-
GRS large-scale structure data, and Lyman � forest data, WMAP data constrain the pri-
mordial scalar and tensor power spectra predicted by single-field inflationary models. For
the scalar modes, the mean and the 68% error level of the 1–d marginalized likelihood for
the power spectrum slope and the running of the spectral index are, respectively, ns(k0 =
0 � 002 Mpc−1) = 1 � 10+0 � 07

−0 � 06 and dns
�
d lnk = −0 � 042+0 � 021

−0 � 020. This value is in agreement with
dns
�
d lnk = −0 � 031+0 � 016

−0 � 018 of Spergel et al. (2003), which was obtained for a � CDM model
with no tensors and a running spectral index. The data suggest at the 2- � level, but do not
require that, the scalar spectral index runs from ns � 1 on large scales to ns � 1 on small
scales. If true, the third derivative of the inflaton potential would be important in describing
its dynamics.

(e) The WMAP constraints on ns, dns
�
d lnk, and r put limits on single-field inflationary models

that give rise to a large tensor contribution and a red (ns � 1) tilt. A minimally-coupled
� � 4

model lies more than 3- � away from the maximum likelihood point.

(f) We test two-field inflationary models with an admixture of adiabatic and isocurvature com-
ponents. The data do not justify adding the additional parameters needed for this model, and
the initial conditions are consistent with being purely adiabatic.

WMAP both confirms the basic tenets of the inflationary paradigm and begins to quantita-
tively test inflationary models.

We conclude by showing the tensor temperature and polarization power spectra for the max-
imum likelihood single-field inflation model for the WMAPext+2dFGRS+Lyman � data set, with
the tensor/scalar ratio replaced by r = 0 � 6 (Figure 9). The detection and measurement of the gravity-
wave power spectrum would provide the next important key test of inflation.

The WMAP mission is made possible by the support of the Office of Space Sciences at NASA
Headquarters and by the hard and capable work of scores of scientists, engineers, technicians,
machinists, data analysts, budget analysts, managers, administrative staff, and reviewers. We thank
Janet Weiland and Michael Nolta for their assistance with data analysis and figures. We thank
Uro �s Seljak for his help with modifications to CMBFAST. HVP acknowledges the support of a
Dodds Fellowship granted by Princeton University. LV is supported by NASA through Chandra
Fellowship PF2-30022 issued by the Chandra X-ray Observatory center, which is operated by the



– 28 –

Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-39073.
We thank Martin Kunz for providing the causal seed simulation results for Figure 1 and Will
Kinney for useful discussions about Monte Carlo simulations of flow equations.

A. INFLATIONARY FLOW EQUATIONS

We begin by describing the hierarchy of inflationary flow equations described by the gener-
alized “Hubble Slow Roll” (HSR) parameters. In the Hamilton-Jacobi formulation of inflationary
dynamics, one expresses the Hubble parameter directly as a function of the field

�
rather than a

function of time, H � H(
�

), under the assumption that
�

is monotonic in time. Then the equations
of motion for the field and background are given by:��

= −2M2
plH
�
(
�

) � (A1)�
H
�
(
�

) � 2 −
3

2M2
pl

H2(
�

) = −
1

2M4
pl

V (
�

) � (A2)

Here, prime denotes derivatives with respect to
�

. Equation (A2), referred to as the Hamilton-
Jacobi Equation, allows us to consider inflation in terms of H(

�
) rather than V (

�
). The former,

being a geometric quantity, describes inflation more naturally. Given H(
�

), equation (A2) immedi-
ately gives V (

�
), and one obtains H(t) by using equation (A1) to convert between H

�
and

�
H. This

can then be integrated to give a(t) if desired, since H(t) � �
a
�
a. Rewriting equation (A2) as

H2(
�

) � 1 −
1
3

�
H � =

1
3M2

pl

V (
�

) � (A3)

we obtain 
 	a
a � =

1
3M2

pl

[V (
�

) −
�� 2]

= H2(
�

)[1 − �
H(
�

)] �

so that the condition for inflation ( 	a � a) � 0 is simply given by �
H � 1.

Thus, one can define a set of HSR parameters in analogy to the PSR parameters of § 3.2.2,
though there is no assumption of slow-roll implicit in this definition:

�
H � 2M2

pl

 H

�
(
�

)
H(

�
) � 2

(A4)

�
H � 2M2

pl

 H

� �
(
�

)
H(

�
) � (A5)
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�
H � 4M4

pl

 H

�
(
�

)H
� � �

(
�

)
H2(

�
) � (A6)

� �
H � �

2Mpl �
� (H

�
)

�
−1

H
� d(

�
+1)H

d
�

(
�
+1)
� (A7)

We need one more ingredient; the number of e-folds before the end of inflation, N is defined by,

N � � te

t
H dt = � � e� H�� d

�
=

1

� 2Mpl
� ��

e

d
�

� �
H(
�

)
� (A8)

where te and
�

e are the time and field value at the end of inflation, and N increases the earlier one
goes back in time (t � 0 � dN � 0). The derivative with respect to N is therefore,

d
dN

=
Mpl

2 �
� d
d
� � (A9)

Then, an infinite hierarchy of inflationary “flow” equations can be defined by differentiating equa-
tions (A4)–(A7) with respect to N:

d �
H

dN
= 2 �

H(
�

H − �
H) (A10)

d(
� �

H)
dN

= [( � − 1)
�

H − � �
H] (

� �
H) +

�
+1 �

H ( � � 0) � (A11)

The definition of the scalar and tensor power spectra are:

� 2� = � 
 H�� � 
 H
2 � � � 2

k=aH

(A12)

� 2
h =

8
M2

pl


 H
2 � � 2

k=aH

� (A13)

Since derivatives with respect to wavenumber k can be expressed with respect to N as:

d
dN

= −(1 − �
H)

d
d lnk

� (A14)

the observables are given in terms of the HSR parameters to second order as (Stewart & Lyth 1993;
Liddle et al. 1994),

r = 16 �
H [1 + 2C( �

H −
�

H)] (A15)

ns − 1 = (2
�

H − 4 �
H) � 1 −

1
4

(3 − 5C) �
H � − (3 − 5C) � 2

H +
1
2

(3 −C)
�

H (A16)

dns

d lnk
= − 
 1

1 − �
H � dns

dN
� (A17)
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where C � 4(ln2 + � ) and � � 0 � 577 is Euler’s constant. Finally, the PSR parameters are given in
terms of the HSR parameters to first order in slow roll as:

�
H = �

V (A18)
�

H =
�

V − �
V (A19)�

H =
�

V − 3 �
V

�
V + 3 � 2

V � (A20)
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Fig. 1.— Temperature-Polarization angular power spectrum. The large-angle TE power spectrum
predicted in primordial adiabatic models (solid), primordial isocurvature models (dashed), and
in causal scaling seed models (dotted). The WMAP TE data (Kogut et al. 2003) is shown for
comparison, in bins of

�
l = 10.
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Fig. 2.— This figure shows ns as a function of k for the WMAPext+2dFGRS+Lyman � data. The
mean (solid line) and the 68% (shaded area) and 95% (dashed lines) intervals are shown. The
scales probed by WMAP, 2dFGRS and Lyman � are indicated on the figure.
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Fig. 3.— This set of figures shows part of the parameter space spanned by viable slow roll inflation
models, with the WMAPext+2dFGRS+Lyman � 68% confidence region shown in dark blue and
the 95% confidence region shown in light blue.

Fig. 4.— This set of figures compares the fits from the WMAPext+2dFGRS+Ly � data to the
predictions of specific classes of physically motivated inflation models. The color coding shows
model classes referred to in the text: (A) red, (B) green, (C) magenta, (D) black. The dark and
light blue regions are the joint 1– � and 2– � regions for the WMAPext+2dFGRS+Lyman � data.
We show only Monte Carlo models that are consistent with 2– � regions in all panels. This figure
does not imply that the models not plotted are ruled out.
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Fig. 5.— This set of figures compares the fits from the WMAPext+2dFGRS+Ly � data to the
predictions of all four classes of inflation models. The top row is Class A [red dots]. The sec-
ond row is Class B [green dots]. The third row is Class C [magenta dots]. The bottom row is
Class D [black dots]. The dark and light blue regions are the joint 1– � and 2– � regions for the
WMAPext+2dFGRS+Ly � data. We show only Monte Carlo models that are consistent with 2– �
regions in all panels. This figure does not imply that the models not plotted are ruled out.
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Fig. 6.— The cumulative distribution of the isocurvature fraction, fiso, for the
WMAPext+2dFGRS+Lyman � data set.
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Fig. 7.— Best-fit models (solid) with a step (left) and a dip (right) in the inflaton potential, with the
WMAP TT data. The best-fit � CDM model to WMAPext data is shown (dotted) for comparison.

Fig. 8.— The large-scale structure power spectra for the best-fit potential step (left) and dip (right)
models.
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Fig. 9.— The tensor power spectrum for a model with r = 0 � 6, close to the 95% upper limit
constraint from a fit to WMAPext+2dFGRS data sets. The plot shows the TT (solid), EE (dots),
BB (short dashes) and the absolute value of TE negative (dots and dashes) and positive (long
dashes) tensor spectra.


